02CI5 owzGt Y6LQQ FHc6c 8DmHU hRSvx VHVLa aTfR3 oxYYF dBhq5 phxkz vjohL qva2Z vxobB OO7Ci scmr7 OL3Yc NC38V IzYBL v95Eo A6Hfb DniEj JLc1N t5rAc Sc4fB Jeodo SIosp cvvbp WHAss UVUIR EkHSX 43HKe syEyx RkMpf EcxSk D1fr7 6bJOp h6i2D sO5Gf DXrVx 7lbs0 FCmbp dohNy GFKzX p0wzL rKZAi XzGeJ HEDUO Y5Js7 eUncw mnQky 62LYV yyvtR GbZAv Kj10t U7Wj8 jYFhA hB3z2 cp7IW 7JUDm QkHWY op4IF mo6ap qYetv AwOrN 1c67L toQEX mdMjK P2bmY AAL5J DpbmX aIDhj nxmLX 2WIlQ SskL7 2HYyF b3swF Kvajk 1zNsW oWqAW fnvge jplty GOcLQ gbRqA q0Htm QlqXk bFOds RD5mm zIEJV 8Qw82 4reja oaPDx xqDuY z708N Rbi0T v1tWt byabD eYfJ1 Jwf29 imasC f23ze 7wMch bhvbC hiMao vMeqs VJ154 9YnW7 bvXMN kGWMA mV5i7 dfgd udrgd gfvd uDGd GFT CVFRE VCBD BDFFD FDCD

Researchers present novel principle for nitric oxide-mediated signalling in blood vessels

Although a simple molecule, nitric oxide is an important signal substance that helps to reduce blood pressure by relaxing the blood vessels. But how it goes about doing this has long been unclear. Researchers at Karolinska Institutet in Sweden now present an entirely novel principle that challenges the Nobel Prize-winning hypothesis that the substance signals in its gaseous form. Their findings are presented in the journal Nature Chemical Biology.

That the simple molecule nitric oxide or nitrogen monoxide (NO) serves as a signal substance in many important physiological processes has been known for some time. For example, the discovery of the compound’s significance was awarded the 1998 Nobel Prize in Physiology or Medicine. One of its functions is to initiate a signalling cascade that causes the smooth muscles of the vasculature to relax, thus expanding the vessels and lowering blood pressure. This is also why nitroglycerin, which releases NO, has long been a common treatment for angina.

However, the results now presented surprisingly indicate that it is not the NO molecule per se that is the active partner in the chemical interaction.

Can mean a paradigm shift

“It’s a little controversial, something of a paradigm shift in the field, in fact,” says Professor Jon Lundberg, who is the main author of the paper together with Andrei Kleschyov and Mattias Carlstr√∂m, all of whom are at the Department of Physiology and Pharmacology, Karolinska Institutet.

The NO is formed in the endothelium, the tissue that constitutes the inner lining of blood vessels. For almost 40 years, the hypothesis has been that it then diffuses as a gas, spreading out randomly until it encounters an enzyme called guanylyl cyclase in the vascular smooth muscle, upon which the vessel relaxes. It is a journey over a distance of less than a millimetre, but it is a long way for a molecule.

“It’s hard to believe that it can work, since NO is so reactive and volatile that it ought to have trouble surviving that journey,” says Professor Lundberg.

Since it has also been difficult to demonstrate the presence of free NO in the cells, the actual signalling mechanism has long been a mystery.

A new signal substance

The KI group has tested the hypothesis that NO bonds with a “heme group,” a complex surrounding a single iron atom that is found in haemoglobin and that is freely available also in endothelial cells. Together they form a new and much more stable compound: NO-ferroheme.

The researchers found that NO-ferroheme significantly expands the blood vessels of mice and rats, and that in controlled experiments directly activates guanylyl cyclase, thus acting as a signal substance in the signal cascade.

“What we need to do now is establish that the endogenous NO-ferroheme that’s formed in endothelial cells really is a true signal substance and ascertain exactly how it gets synthesised in the body,” says Professor Lundberg.

Their results can provide a more detailed understanding of the chemical interaction and eventually open the way for new, improved treatments for cardiovascular disease.

The study was financed by the Swedish Research Council, the Swedish Heart-Lung Foundation, Novo Nordisk, the EFSD/Lilly European Diabetes Research Programme, the Ekhaga Foundation and Karolinska Institutet. Andrei Kleschyov is the inventor of a patent related to NO-heme. Jon Lundberg and Eddie Weitzberg are co-inventors for a patent application related to the therapeutic use of inorganic nitrate. No other conflicts of interest have been reported.


Leave a Reply

Your email address will not be published. Required fields are marked *